Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744825

RESUMEN

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Asunto(s)
Acetil-CoA Carboxilasa , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Supervivencia Celular , Ácidos Grasos , Glucosa , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Glucosa/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ácidos Grasos/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ratones , NADP/metabolismo , Biosíntesis de Proteínas , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estrés Oxidativo , Línea Celular Tumoral , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética
2.
Cancer Res ; 81(8): 1988-2001, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687947

RESUMEN

Hepatic fat accumulation is associated with diabetes and hepatocellular carcinoma (HCC). Here, we characterize the metabolic response that high-fat availability elicits in livers before disease development. After a short term on a high-fat diet (HFD), otherwise healthy mice showed elevated hepatic glucose uptake and increased glucose contribution to serine and pyruvate carboxylase activity compared with control diet (CD) mice. This glucose phenotype occurred independently from transcriptional or proteomic programming, which identifies increased peroxisomal and lipid metabolism pathways. HFD-fed mice exhibited increased lactate production when challenged with glucose. Consistently, administration of an oral glucose bolus to healthy individuals revealed a correlation between waist circumference and lactate secretion in a human cohort. In vitro, palmitate exposure stimulated production of reactive oxygen species and subsequent glucose uptake and lactate secretion in hepatocytes and liver cancer cells. Furthermore, HFD enhanced the formation of HCC compared with CD in mice exposed to a hepatic carcinogen. Regardless of the dietary background, all murine tumors showed similar alterations in glucose metabolism to those identified in fat exposed nontransformed mouse livers, however, particular lipid species were elevated in HFD tumor and nontumor-bearing HFD liver tissue. These findings suggest that fat can induce glucose-mediated metabolic changes in nontransformed liver cells similar to those found in HCC. SIGNIFICANCE: With obesity-induced hepatocellular carcinoma on a rising trend, this study shows in normal, nontransformed livers that fat induces glucose metabolism similar to an oncogenic transformation.


Asunto(s)
Carcinoma Hepatocelular/etiología , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Neoplasias Hepáticas/etiología , Animales , Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica , Ciclo del Ácido Cítrico/fisiología , Ácidos Grasos/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Ácido Láctico/biosíntesis , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Palmitatos/farmacología , Peroxisomas/metabolismo , Proteómica , Piruvato Carboxilasa/metabolismo , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Activación Transcripcional
3.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32404031

RESUMEN

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Neovascularización Fisiológica , Vasos Retinianos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Encéfalo/citología , Movimiento Celular , Proliferación Celular , Células Endoteliales/fisiología , Endotelio , Endotelio Vascular/fisiología , Metabolismo Energético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Glucólisis , Humanos , Ratones , Retina/citología
4.
Nat Commun ; 11(1): 1393, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170132

RESUMEN

Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.


Asunto(s)
Aminoácidos/metabolismo , Carcinoma Hepatocelular/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Citocromo P-450 CYP3A , Femenino , Técnicas de Inactivación de Genes , Células Hep G2 , Factor Nuclear 1-alfa del Hepatocito , Factor Nuclear 3-gamma del Hepatocito , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio , Humanos , Hígado , Masculino , Ingeniería Metabólica , Redes y Vías Metabólicas , Persona de Mediana Edad , Células Madre Pluripotentes , Células Madre , Transcriptoma , Proteínas Supresoras de Tumor
5.
Oncotarget ; 11(8): 801-812, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32166001

RESUMEN

SLC25A32 is a member of the solute carrier 25 family of mitochondrial transporters. SLC25A32 transports tetrahydrofolate (THF) as well as FAD into mitochondria and regulates mitochondrial one-carbon metabolism and redox balance. While it is known that cancer cells require one-carbon and FAD-dependent mitochondrial metabolism to sustain cell proliferation, the role of SLC25A32 in cancer cell growth remains unexplored. Our results indicate that the SLC25A32 gene is highly amplified in different tumors and that amplification correlates with increased mRNA expression and reduced patients´ survival. siRNA-mediated knock-down and CRISPR-mediated knock-out of SLC25A32 in cancer cells of different origins, resulted in the identification of cell lines sensitive and resistant to SLC25A32 inhibition. Mechanistically, tracing of deuterated serine revealed that SLC25A32 knock-down does not affect the mitochondrial/cytosolic folate flux as measured by Liquid Chromatography coupled Mass Spectrometry (LC-MS). Instead, SLC25A32 inhibition results in a respiratory chain dysfunction at the FAD-dependent complex II enzyme, induction of Reactive Oxygen Species (ROS) and depletion of reduced glutathione (GSH), which impairs cancer cell proliferation. Moreover, buthionine sulfoximine (BSO) treatment further sensitizes cells to ROS-mediated inhibition of cell proliferation upon SLC25A32 knock-down. Treatment of cells with the FAD precursor riboflavin and with GSH rescues cancer cell proliferation upon SLC25A32 down-regulation. Our results indicate that the reduction of mitochondrial FAD concentrations by targeting SLC25A32 has potential clinical applications as a single agent or in combination with approved cancer drugs that lead to increased oxidative stress and reduced tumor growth.

6.
Nature ; 566(7744): 403-406, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728499

RESUMEN

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismo
7.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146488

RESUMEN

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animales , Proliferación Celular , Células HEK293 , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo
8.
Front Microbiol ; 8: 2295, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209301

RESUMEN

HsAFP1, a plant defensin isolated from coral bells (Heuchera sanguinea), is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the membrane phospholipid phosphatidic acid (PA), which is a precursor for the biosynthesis of other phospholipids, and to a lesser extent with various phosphatidyl inositol phosphates (PtdInsP's). Moreover, via reverse ELISA assays we identified two basic amino acids in HsAFP1, namely histidine at position 32 and arginine at position 52, as well as the phosphate group in PA as important features enabling this interaction. Using a HsAFP1 variant, lacking both amino acids (HsAFP1[H32A][R52A]), we showed that, as compared to the native peptide, the ability of this variant to bind to PA and PtdInsP's is reduced (≥74%) and the antifungal activity of the variant is reduced (≥2-fold), highlighting the link between PA/PtdInsP binding and antifungal activity. Using fluorescently labelled HsAFP1 in confocal microscopy and flow cytometry assays, we showed that HsAFP1 accumulates at the cell surface of yeast cells with intact membranes, most notably at the buds and septa. The resulting HsAFP1-induced membrane permeabilization is likely to occur after HsAFP1's internalization. These data provide novel mechanistic insights in the mode of action of the HsAFP1 plant defensin.

9.
Oxid Med Cell Longev ; 2017: 4064628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29129987

RESUMEN

Amphotericin B (AmB) induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB's fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB's action. Hence, superoxide radicals were important for AmB's fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Candida albicans/metabolismo , Candida glabrata/metabolismo , Óxido Nítrico/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Peptides ; 98: 43-50, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27578329

RESUMEN

Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50∼26µM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (∼100µM).


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Venenos de Escorpión/farmacología , Animales , Cisteína/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Secuencias Hélice-Asa-Hélice , Oocitos , Esporas Fúngicas/efectos de los fármacos , Relación Estructura-Actividad , Xenopus laevis , Levaduras/efectos de los fármacos
11.
Sci Rep ; 6: 32121, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27573545

RESUMEN

Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαß-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We found that recombinant (r)AtPDF2.3 blocks Kv1.2 and Kv1.6 potassium channels, akin to the interaction between scorpion toxins and potassium channels. Moreover, rAtPDF2.3[G36N], a variant with a KCXN toxin signature (K-C5-R-N), is more potent in blocking Kv1.2 and Kv1.6 channels than rAtPDF2.3, whereas rAtPDF2.3[K33A], devoid of the toxin signature, is characterized by reduced Kv channel blocking activity. These findings highlight the importance of the KCXN scorpion toxin signature in the plant defensin sequence for blocking potassium channels. In addition, we found that rAtPDF2.3 inhibits the growth of Saccharomyces cerevisiae and that pathways regulating potassium transport and/or homeostasis confer tolerance of this yeast to rAtPDF2.3, indicating a role for potassium homeostasis in the fungal defence response towards rAtPDF2.3. Nevertheless, no differences in antifungal potency were observed between the rAtPDF2.3 variants, suggesting that antifungal activity and Kv channel inhibitory function are not linked.


Asunto(s)
Antifúngicos/farmacología , Proteínas de Arabidopsis/farmacología , Proteínas de Homeodominio/farmacología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Antifúngicos/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.6 , Bloqueadores de los Canales de Potasio/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
12.
Peptides ; 82: 44-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27221550

RESUMEN

The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/aislamiento & purificación , Péptidos/genética , Peptidil-Dipeptidasa A/metabolismo , Venenos de Escorpión/química , Secuencia de Aminoácidos/genética , Inhibidores de la Enzima Convertidora de Angiotensina/química , Animales , Disulfuros/química , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Peptidil-Dipeptidasa A/química , Prolina/química , Venenos de Escorpión/metabolismo , Escorpiones/química , Escorpiones/genética
13.
Peptides ; 75: 71-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26592804

RESUMEN

The radish defensin RsAFP2 was previously characterized as a peptide with potent antifungal activity against several plant pathogenic fungi and human pathogens, including Candida albicans. RsAFP2 induces apoptosis and impairs the yeast-to-hypha transition in C. albicans. As the yeast-to-hypha transition is considered important for progression to mature biofilms, we analyzed the potential antibiofilm activity of recombinant (r)RsAFP2, heterologously expressed in Pichia pastoris, against C. albicans biofilms. We found that rRsAFP2 prevents C. albicans biofilm formation with a BIC-2 (i.e., the minimal rRsAFP2 concentration that inhibits biofilm formation by 50% as compared to control treatment) of 1.65 ± 0.40 mg/mL. Moreover, biofilm-specific synergistic effects were observed between rRsAFP2 doses as low as 2.5 µg/mL to 10 µg/mL and the antimycotics caspofungin and amphotericin B, pointing to the potential of RsAFP2 as a novel antibiofilm compound. In addition, we characterized the solution structure of rRsAFP2 and compared it to that of RsAFP1, another defensin present in radish seeds. These peptides have similar amino acid sequences, except for two amino acids, but rRsAFP2 is more potent than RsAFP1 against planktonic and biofilm cultures. Interestingly, as in case of rRsAFP2, also RsAFP1 acts synergistically with caspofungin against C. albicans biofilms in a comparable low dose range as rRsAFP2. A structural comparison of both defensins via NMR analysis revealed that also rRsAFP2 adopts the typical cysteine-stabilized αß-motif of plant defensins, however, no structural differences were found between these peptides that might result in their differential antifungal/antibiofilm potency. This further suggests that the conserved structure of RsAFP1 and rRsAFP2 bears the potential to synergize with antimycotics against C. albicans biofilms.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Defensinas/farmacología , Equinocandinas/farmacología , Lipopéptidos/farmacología , Proteínas de Plantas/farmacología , Secuencia de Aminoácidos , Candida albicans/fisiología , Caspofungina , Defensinas/química , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Estructura Secundaria de Proteína , Raphanus/química
14.
PLoS One ; 10(8): e0132701, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26248029

RESUMEN

Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel ß-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 µM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 µM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 µM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Defensinas/farmacología , Equinocandinas/farmacología , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Caspofungina , Sinergismo Farmacológico , Humanos , Lipopéptidos
15.
Molecules ; 19(8): 12280-303, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25153857

RESUMEN

Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents.


Asunto(s)
Ascomicetos/fisiología , Defensinas/fisiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/fisiología , Secuencias de Aminoácidos , Defensinas/química , Inmunidad Innata , Viabilidad Microbiana , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Plantas/inmunología , Plantas/microbiología
16.
Biochim Biophys Acta ; 1843(6): 1207-1215, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24632503

RESUMEN

We previously identified the Arabidopsis thaliana-derived decapeptide OSIP108, which increases tolerance of plants and yeast cells to oxidative stress. As excess copper (Cu) is known to induce oxidative stress and apoptosis, and is characteristic for the human pathology Wilson disease, we investigated the effect of OSIP108 on Cu-induced toxicity in yeast. We found that OSIP108 increased yeast viability in the presence of toxic Cu concentrations, and decreased the prevalence of Cu-induced apoptotic markers. Next, we translated these results to the human hepatoma HepG2 cell line, demonstrating anti-apoptotic activity of OSIP108 in this cell line. In addition, we found that OSIP108 did not affect intracellular Cu levels in HepG2 cells, but preserved HepG2 mitochondrial ultrastructure. As Cu is known to induce acid sphingomyelinase activity of HepG2 cells, we performed a sphingolipidomic analysis of OSIP108-treated HepG2 cells. We demonstrated that OSIP108 decreased the levels of several sphingoid bases and ceramide species. Moreover, exogenous addition of the sphingoid base dihydrosphingosine abolished the protective effect of OSIP108 against Cu-induced cell death in yeast. These findings indicate the potential of OSIP108 to prevent Cu-induced apoptosis, possibly via its effects on sphingolipid homeostasis.


Asunto(s)
Apoptosis/efectos de los fármacos , Arabidopsis/metabolismo , Cobre/farmacología , Oligopéptidos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Esfingolípidos/farmacología , Células Hep G2 , Humanos , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
17.
Anal Chem ; 85(21): 10075-82, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24079816

RESUMEN

Ever increasing demands in sensitivity and specificity of biosensors have recently established a trend toward the use of multivalent bioreceptors. This trend has also been introduced in the field of bacteriophage affinity peptides, where the entire phage is used as a receptor rather than the individual peptides. Although this approach is gaining in popularity due to the numerous advantages, binding kinetics of complete phage particles have never been studied in detail, notwithstanding being essential for the efficient design of such applications. In this paper we used an in house developed fiber-optic surface plasmon resonance (FO-SPR) biosensor to study the affinity and binding kinetics of phages, displaying peptide libraries. By using either peptide expression on the p3 or on the p8 coat proteins, a corresponding density of 5 up to more than 2000 peptides on a single virus particle was obtained. Binding parameters of 26 different filamentous phages, displaying peptides selective for enhanced Green Fluorescent Protein (eGFP), were characterized. This study revealed a broad affinity range of phages for the target eGFP, indicating their potential to be used for applications with different requirements in binding kinetics. Moreover, detailed analysis of koff and kon values of several selected p3 and p8 phages, using the FO-SPR biosensor, clearly showed the correlation between the binding parameters and the density at which eGFP-peptides are being expressed. Consequently, although p3 and p8-based phages both revealed exceptionally high affinities for eGFP, two p8 phages were found to have the highest affinity with dissociation constants (Kd) in the femtomolar range.


Asunto(s)
Bacteriófagos/genética , Proteínas Portadoras/análisis , Péptidos/análisis , Resonancia por Plasmón de Superficie/métodos , Proteínas Portadoras/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/química , Péptidos y Proteínas de Señalización Intercelular , Péptidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...